
Ant
Technology

Mobile Gateway Service
User Guide

Document Version: 20230209

Ant
Technology

Mobile Gateway Service
User Guide

Document Version: 20230209

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

and other trademarks related to Ant Group are owned by Ant
Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Gateway Service User Guide·Legal disclaimer

> Document Version: 20230209 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Gateway Service User Guide·Document convent i
ons

> Document Version: 20230209 I

Table of Contents
1.Change history

2.About Mobile Gateway Service

3.Terminology

4.Client-side development guide

4.1. Android

4.1.1. Quick start

4.1.2. Advance guide

4.2. iOS

4.2.1. Add SDK

4.2.2. Use the SDK

4.3. H5 JS programming

5.Server-side development guide

5.1. Backend signature verification

5.2. Service definition and development

5.3. Instructions on gateway helper classes

6.Gateway exception troubleshooting

7.FAQ

8.Reference

8.1. Gateway result codes

8.2. Security guard result codes

8.3. Gateway log instructions

8.3.1. Gateway server logs

8.3.2. Gateway SPI logs

8.4. Service interface definition specifications

8.5. Key generation method

8.6. Gateway signature mechanism introduction

05

06

07

08

08

08

09

11

11

12

15

17

17

17

23

27

29

30

30

32

35

35

38

38

41

41

Mobile Gateway Service User Guide·T able of Contents

> Document Version: 20230209 I

Document version Revisions

V20211105

Added descriptions about the service circuit breaking and dynamic routing to Mobile Gateway Service
overview.

In the API groups topic, updated the procedure for creating a Duboo API group, and added multi-IDC and
registry authentication information.

In the Configure APIs topic, added descriptions about configuring the circuit breaking mechanism and
updated the parameter description.

In the Gateway management overview, added descriptions about the circuit breaking mechanism.

Added the Routing rule topic to describe how to configure and manage routing rules.

V20210630
Updated the Maven dependency version in Service definition and development.

Added a code sample about using SM2/SM3 for signature signing in Verify the backend signature.

1.Change history

Mobile Gateway Service User Guide·Change history

> Document Version: 20230209 5

Mobile Gateway Service (MGS) is a component provided by mPaaS that connects the mobile client and server. This component simplifies the data protocol
and communication protocol between the mobile terminal and the server, and can significantly improve development and network communication
efficiency.

Features
The gateway serves as a bridge between the client and server. The client accesses the service API in the backend through the gateway. The gateway
provides the following functions:

Automatically generates the RPC call code for the client regardless of network communication, protocols, and data formats.

Automatically reverse the data returned from the server to generate Objective-C objects, without extra coding.

Supports data compression, caching, etc.

Supports unified exception handling, such as pop-up display and toasts.

Supports RPC interceptors to achieve customized requests and processing.

Uses the unified security encryption mechanism and anti-tampering request signature verification mechanism.

Enables traffic restriction and control to protect the backend server.

Has the circuit breaker feature to protect the backend when the backend system is abnormal.

Has the dynamic routing feature to support dynamic configuration of routing rules.

Advantages
Mobile Gateway Service has the following advantages:

Adapts to various terminals and connects heterogeneous backend services with simple configuration.

Automatically generates mobile SDK to realize frontend-backend separation, improving development efficiency.

Supports service registration, and discovery and management, and implements service aggregation and integration to reduce management cost and
security risk.

Provides optimized data protocol and communication protocol, enhancing the network communication quality and efficiency.

Application scenarios
The Mobile Gateway Service is generally applied in the following scenarios:

Open mobile service capability

With the rapid development of mobile Internet and inclusive financing, enterprises are increasingly eager to open their existing mature backend services.
With Mobile Gateway Service, you can develop your mobile servicing capability without any additional configuration.

Single service with multi-terminal output

The mobile Internet era requires service to support various types of terminal devices, which greatly increases the system complexity. Using Mobile
Gateway Service, you can adapt service to multiple terminals by defining your service in mobile gateway.

Standard and unified APIs open for heterogeneous services

In many enterprises, the backend services are in multiple languages and structures. To open standard and unified service APIs to others, you only need to
access the Mobile Gateway Service by following certain standards.

2.About Mobile Gateway Service

Mobile Gateway Service User Guide·About Mobile Gate
way Service

> Document Version: 20230209 6

API Group

The group to which API belongs. It can be a specific system name, module name, or an abstract identifier.

appId

Mobile application ID, which is generated upon mPaaS application creation.

HRPC

An RPC solution implemented on the basis of HTTP.

Mobile Gateway Service (MGS)

A component that provides gateway API service.

MPC

The abbreviation of mpaaschannel, which is a set of RPC solution implemented by mPaaS.

OperationType

The unique identifier of API service. It is the OperationType you entered when creating an API.

workspaceId

The ID of workspace on mobile development platform, which is used to isolate different workspaces.

3.Terminology

Mobile Gateway Service User Guide·T erminology

> Document Version: 20230209 7

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use 10.1.68 or 10.1.60 instead. For how to upgrade the baseline from
version 10.1.32 to 10.1.68 or 10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

The gateway serves as a bridge between the client and the server. The client accesses the backend service API through the gateway. With the gateway,
you can:

Encapsulate the communication between the client and server through dynamic proxy.

Export the codes automatically generated by the server for the use by the client if both the server and client have consistent APIs defined.

Perform unified process on RpcException , and notify users of the exception through pop-up dialog box and toast box.

The mobile gateway supports three types of access: native AAR, mPaaS Inside and component-based (Portal & Bundle).

Prerequisites
For native AAR access, you need to Add mPaaS to project.

For mPaaS Inside access, you need to first complete mPaaS Inside access procedure.

For component-based access, you need to first complete Component-based access procedure.

Add the SDK

Native AAR
Referring to AAR component management, use Component management (AAR) to install the Mobile Gateway component in your projects.

mPaaS Inside
Use Component management to install the Mobile Gateway component in your projects.

For more information, see Manage component dependency.

Component-based (Portal & Bundle)
Use Component management to install the Mobile Gateway component in your Portal and Bundle projects.

For more information, see Manage component dependency.

Initialize mPaaS
If you access MGS through native AAR or mPaaS Inside method, you need to initialize mPaaS.

public class MyApplication extends Application {

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 // Callback settings of initializing mPaaS
 QuinoxlessFramework.setup(this, new IInitCallback() {
 @Override
 public void onPostInit() {
 // This callback indicates that mPaaS has been initialized, and mPaaS related calls can be made in this callback.
 }
 });
 }

 @Override
 public void onCreate() {
 super.onCreate();
 // Initialize mPaaS
 QuinoxlessFramework.init();
 }
}

Generate RPC code
When the App gains access to the backend service in the mobile gateway console, you can go to the mPaaS console and, from the left-side navigation
pane, choose Mobile Gateway Service > Manage APIs > Generate code, then you can download the RPC code of the client. For more information, see Mobile
Gateway Service > Server Control .

The structure of the downloaded RPC code is as follows. It consists of the RPC configuration, request model and response model.

4.Client-side development guide
4.1. Android
4.1.1. Quick start

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 8

Call RPC
The client initiates RPC request.

// Obtain client instance
RpcDemoClient client = MPRpc.getRpcProxy(RpcDemoClient.class);
// Set request
GetIdGetReq req = new GetIdGetReq();
req.id = "123";
req.age = 14;
req.isMale = true;
// Initiate RPC request
try {
 String response = client.getIdGet(req);
} catch (RpcException e) {
 // Process RPC exception
 Log.i("RpcException", "code: " + e.getCode() + " msg: " + e.getMsg());
}

RPC exception is thrown through RpcException , and you can handle the exception with reference to the result code. For instructions on error codes, see
Gateway result codes.

Related links
Code sample

Gateway result codes

Key generation method

This article describes the settings of the mobile gateway RPC interceptor, RPC request header, RPC Cookie and RPC signature.

Important

Added setting RPC signature content in 10.2.3 baseline.

Intercept RPC requests
In some situations during business development, it is required to control the network requests from clients (for example, intercept network requests, forbid
the access to some interfaces or limit traffic), and you can do that with RPC interceptor.

Create a global interceptor

4.1.2. Advance guide

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 9

https://github.com/mpaas-demo/android-rpc

public class CommonInterceptor implements RpcInterceptor {
 /**
 * Pre-interception: Call back before sending RPC.
 * @param proxy: RPC proxy object.
 * @param clazz: Model class of rpcface, you can judge which RPC model class is called through clazz.
 * @param method: The method called by the current RPC.
 * @throws RpcException
 * @return true means proceeding; false means interrupting the current request and throwing RpcException, with error code: 9.
 */
 @Override
 public boolean preHandle(Object proxy,
 ThreadLocal<Object> retValue,
 byte[] retRawValue,
 Class<? > clazz,
 Method method,
 Object[] args,
 Annotation annotation,
 ThreadLocal<Map<String, Object>> extParams)
 throws RpcException {
 //Do something...
 return true;
 }
 /**Post-interception: Call back when RPC is successfully initiated.
 * @return true means proceeding; false means interrupting the current request and throwing RpcException, with error code: 9.
 */
 @Override
 public boolean postHandle(Object proxy,
 ThreadLocal<Object> retValue,
 byte[] retRawValue,
 Class<? > clazz,
 Method method,
 Object[] args,
 Annotation annotation) throws RpcException {
 //Do something...
 return true;
 }
 /**
 Exception interception: Call back when initiating RPC failed.
 * @param exception: Error occurs on the current RPC.
 * @return true means proceeding to throw the current exception; false means returning as normal without throwing any exception. If there is no special requirement,
don’t return false.
 */
 @Override
 public boolean exceptionHandle(Object proxy,
 ThreadLocal<Object> retValue,
 byte[] retRawValue,
 Class<? > clazz,
 Method method,
 Object[] args,
 RpcException exception,
 Annotation annotation) throws RpcException {
 //Do something...
 return true;
 }
}

Register an interceptor
During framework startup, register the interceptor when RpcService is being initialized, for example:

public class MockLauncherApplicationAgent extends LauncherApplicationAgent {

 public MockLauncherApplicationAgent(Application context, Object bundleContext) {
 super(context, bundleContext);
 }

 @Override
 public void preInit() {
 super.preInit();
 }

 @Override
 public void postInit() {
 super.postInit();
 RpcService rpcService = getMicroApplicationContext().findServiceByInterface(RpcService.class.getName());
 rpcService.addRpcInterceptor(OperationType.class, new CommonInterceptor());
 }
}

Set RPC request header
Set the RPC request header in the initRpcConfig method of the MainActivity class. For details, see Code sample.

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 10

https://github.com/mpaas-demo/android-rpc/blob/master/app/src/main/java/com/mpaas/demo/rpc/RpcActivity.java

private void initRpcConfig(RpcService rpcService) {
 //Set the request header
 Map<String, String> headerMap = new HashMap<>();
 headerMap.put("key1", "val1");
 headerMap.put("key2", "val2");
 rpcInvokeContext.setRequestHeaders(headerMap);
 }

Set RPC cookie

Set cookie
Set RPC cookie by calling the following interface. Among them, the rule of Your domain is all the contents between the first . of the gateway URL and
the first / after the dot. For example, if the gateway URL is http://test-cn-hangzhou-mgs-gw.cloud.alipay.com/mgw.htm , then Your domain is
 .cloud.alipay.com .

GwCookieCacheHelper.setCookies(Your domain, cookiesMap);

Remove cookie
Call the following interface to remove the set cookies.

GwCookieCacheHelper.removeAllCookie();

Set SM3 signature verification
After the RPC is initialized, the global signature verification method can be specified as the sm3 type through the setGlobalSignType method of the
 MPRpc class.

MPRpc.setGlobalSignType(TransportConstants.SIGN_TYPE_SM3);

Set RPC signature

Interface

class TransportConstants {
 public static final int SIGN_TYPE_DEFAULT = 0; // Default signature method, namely md5
 public static final int SIGN_TYPE_MD5 = 1; // md5
 public static final int SIGN_TYPE_HMACSHA256 = 3; // hmacsha256
 public static final int SIGN_TYPE_SHA256 = 4; // sha256
 public static final int SIGN_TYPE_SM3 = 5; // sm3
}

// Global rpc signature algorithm setting
MPRpc.setGlobalSignType(int signType);

Example
Set the global RPC signType and take effect for all RPCs.

// Set the signature method to SM3
MPRpc.setGlobalSignType(TransportConstants.SIGN_TYPE_SM3);

This guide introduces how to integrate Mobile Gateway Service (MGS) to iOS client. You can integrate MGS to iOS client based on native project with
CocoaPods.

Prerequisites
You have connected your project to mPaaS. For more information, see Access mPaaS based on native framework and using Cocoapods.

Add the SDK
Use CocoaPods plugin to add the MGS SDK. Complete the following steps:

1. In the Podfile file, use mPaaS_pod "mPaaS_RPC" to add mobile gateway component dependencies.

4.2. iOS
4.2.1. Add SDK

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 11

2. In the terminal, run pod install to complete access.

Follow-up steps
Use the SDK

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use 10.1.68 or 10.1.60 instead. For how to upgrade the baseline from vers
ion 10.1.32 to 10.1.68 or 10.1.60, see mPaaS 10.1.68 upgrade guide or mPaaS 10.1.60 upgrade guide.

The RPC related modules include APMobileNetwork.framework and MPMgsAdapter . APIs in the MPMgsAdapter module are recommended.

This topic describes how to use the mobile gateway SDK.

1. Initialize gateway services

2. Generate the RPC code

3. Send a request

4. Customize a request

5. Customize an RPC interceptor

6. Encrypt data

7. Data signature

Initialize gateway services
Call the following method to initialize gateway services:

[MPRpcInterface initRpc];

Upgrade precautions
The Category file of the DTRpcInterface class does not need to be added since version 10.1.32. The middle tier implements package reading from meta.config

Generate the RPC code

4.2.2. Use the SDK

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 12

When the app accesses the backend service in the mobile gateway console, you can download the RPC code for the client. For more information, see Generate code

The following figure shows the structure of the downloaded RPC code.

In the code:

 RPCDemoCloudpay_accountClient : RPC configuration.

 RPCDemoAuthLoginPostReq : request model.

 RPCDemoLoginResult : response model.

Send a request
RPC requests must be called in subthreads. The subthread encapsulated with MPRpcInterface at the middle tier can be used to call the API. The main thread is used as the callback method by default. The code sample is as follows:

- (void)sendRpc
{
 __block RPCDemoLoginResult *result = nil;
 [MPRpcInterface callAsyncBlock:^{
 @try
 {
 RPCDemoLoginRequest *req = [[RPCDemoLoginRequest alloc] init];
 req.loginId = @"alipayAdmin";
 req.loginPassword = @"123456";
 RPCDemoAuthLoginPostReq *loginPostReq = [[RPCDemoAuthLoginPostReq alloc] init];
 loginPostReq._requestBody = req;
 RPCDemoCloudpay_accountClient *service = [[RPCDemoCloudpay_accountClient alloc] init];
 result = [service authLoginPost:loginPostReq];
 }
 @catch (NSException *exception) {
 NSLog(@"%@", exception);
 NSError *error = [userInfo objectForKey:@"kDTRpcErrorCauseError"]; // Obtain the detailed information of the exception
 NSInteger code = error.code; // Obtain the error code of the exception
 }
 } completion:^{
 NSString *str = @"";
 if (result && result.success) {
 str = @"Successful login";
 } else {
 str = @"Login failure";
 }

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:str message:nil delegate:nil
 cancelButtonTitle:nil otherButtonTitles:@"ok", nil];
 [alert show];
 }];
}

Note: Use try catch to catch exceptions. When the gateway is abnormal, an exception is generated. In this case, check the cause of the exception based on the [result code] (64260).

Customize a request
 DTRpcMethod describes RPC request methods. It records the method name, arguments, and return types of RPC requests.

If no signature is required for request sending, set the signCheck attribute of DTRpcMethod to NO.

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 13

-(MPDemoUserInfo *) dataPostSetTimeout:(MPDemoPostPostReq *)requestParam
{
 DTRpcMethod *method = [[DTRpcMethod alloc] init];
 method.operationType = @"com.antcloud.request.post";
 method.checkLogin = NO ;
 method.signCheck = NO ;
 method.returnType = @"@\"MPDemoUserInfo\"";

 return [[DTRpcClient defaultClient] executeMethod:method params:@[]];
}

To set a timeout interval, set the timeoutInterval attribute of DTRpcMethod .

-(MPDemoUserInfo *) dataPostSetTimeout:(MPDemoPostPostReq *)requestParam
{
 DTRpcMethod *method = [[DTRpcMethod alloc] init];
 method.operationType = @"com.antcloud.request.post";
 method.checkLogin = NO ;
 method.signCheck = YES ;
 method.timeoutInterval = 1; //The timeout interval defines the period in which the client receives a response from the gateway. The timeout interval configured o
n the server defines the period in which the backend business system delivers a response. The default value is 20, in seconds. A value smaller than 1 is invalid, in whic
h case the default value is used.
 method.returnType = @"@\"MPDemoUserInfo\"";

 return [[DTRpcClient defaultClient] executeMethod:method params:@[]];
}

To add a header to an API, use the following extension method of DTRpcClient :

-(MPDemoUserInfo *) dataPostAddHeader:(MPDemoPostPostReq *)requestParam
{
 DTRpcMethod *method = [[DTRpcMethod alloc] init];
 method.operationType = @"com.antcloud.request.postAddHeader";
 method.checkLogin = NO ;
 method.signCheck = YES ;
 method.returnType = @"@\"MPDemoUserInfo\"";

 // Add a header to the API.
 NSDictionary *customHeader = @{@"testKey": @"testValue"};
 return [[DTRpcClient defaultClient] executeMethod:method params:@[] requestHeaderField:customHeader responseHeaderFields:nil];
}

To add a header to all APIs, you can use the interceptor. For the specific implementation method, please refer to the mobile gateway code example.

 checkLogin attribute is used to verify the API session and must work with the gateway console. The default value NO is recommended.

Customize an RPC interceptor
Based on your business requirements, logical processing may be required before an RPC request is sent or after RPC processing. The RPC module provides an interceptor mechanism to meet such requirements.

Customize an interceptor
Create an interceptor and implement the <DTRpcInterceptor> protocol method to handle related operations before RPC requests are sent or after they are processed.

@interface HXRpcInterceptor : NSObject<DTRpcInterceptor>

@end

@implementation HXRpcInterceptor

- (DTRpcOperation *)beforeRpcOperation:(DTRpcOperation *)operation{
 // TODO
 return operation;
}

- (DTRpcOperation *)afterRpcOperation:(DTRpcOperation *)operation{
 // TODO
 return operation;
}
@end

Register the interceptor
Call the extension API at the middle tier to register the customized child interceptor in the interceptor container.

HXRpcInterceptor *mpTestIntercaptor = [[HXRpcInterceptor alloc] init]; // Customized child interceptor
 [MPRpcInterface addRpcInterceptor:mpTestIntercaptor];

Encrypt data
The RPC provides a variety of data encryption configurations. For more information, see Encrypt data.

Data signature(10.2.3 support)
10.2.3 Baseline RPC provides a variety of data signature configuration functions. The 10.2.3 baseline has upgraded the wireless bodyguard SDK to support the national secret signature. After the upgrade, the baseline needs to replace the wireless bodyguard image with the V6 version.

The 10.1.68 baseline defaults to V5 version. Please follow the steps below to use the plugin to generate the V6 image and replace the original yw_1222.jpg wireless bodyguard image in the project.

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 14

https://github.com/mpaas-demo/ios-rpc

The 10.1.68 baseline defaults to V5 version. Please follow the steps below to use the plugin to generate the V6 image and replace the original yw_1222.jpg wireless bodyguard image in the project.

1. Install the mPaaS command line tool (the command line tool package is included in the plugin installation, remove the Xcode signature to set N).

2. Use the following command line to generate a new wireless bodyguard image.

mpaas inst sgimage -c /path/to/Ant-mpaas-0D4F511111111-default-IOS.config -V 6 -t 1 -o /path/to/output --app-secret sssssdderrff --verbose

Note

The config file directory, target file directory, and appsecret parameter descriptions should be replaced with actual values.

3. If the wireless bodyguard has to support the national secret function, please configure the category code according to the following code to set the signature algorithm. The default is MPAASRPCSignTypeDefault when it is not configured, and the signature algorithm is MD5.

The optional values of the signature algorithm are as follows:

MD5: MPAASRPCSignTypeDefault (default)

SHA256: MPAASRPCSignTypeSHA256

HMACSHA256: MPAASRPCSignTypeHMACSHA256

SM3: MPAASRPCSignTypeSM3

 Code example:

#import <APMobileNetwork/DTRpcInterface.h>

@interface DTRpcInterface (mPaaSDemo)

@end

@implementation DTRpcInterface (mPaaSDemo)

- (MPAASRPCSignType)customRPCSignType
{
 return MPAASRPCSignTypeSM3;
}

@end

Related topics
Security Guard result codes

Gateway result codes

Overview
At present, JS is widely used for mobile frontend coding. mPaaS provides another mobile Web solution: HTML5 Container. HTML5 is based on Android and iOS,
see mPaaS overview for more information about how access HTML5.

After the client accesses HTML5, the frontend can conveniently use the gateway:

Encapsulate the communication between client and server via dynamic agent.

If the server and client have defined the same interfaces, then the codes are automatically generated by server and exported to the client for use.

Uniformly process RpcException by using pop-up dialog, toast, and so on.

Prerequisites
The Android/iOS client has accessed HTML5 Container.

Generate JS codes
When application accesses backend services from mobile gateway console, the JS calling codes of RPC can be automatically generated on the console. See
Mobile Gateway Service > Generate codes for more information.

4.3. H5 JS programming

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 15

https://icms.alibaba-inc.com/content/mpaas/development-guides?l=2&m=72212&n=3194782

According to the agreed interface parameter, the following template codes will be generated for each API:

var params = [{
 "_requestBody":{"userName":"", "userId":0}
}]
var operationType = 'alipay.mobile.ic.dispatch'

AlipayJSBridge.call('rpc', {
 operationType: operationType,
 requestData: params,
 headers:{}
}, function (result) {
 console.log(result);
});

When the frontend needs to use RPC, it uses the template mentioned above and fills the called request parameters into the template.

Usage instruction
The codes that JS uses to call RPC are as follows:

AlipayJSBridge.call('rpc', {
 operationType: 'alipay.client.xxxx',
 requestData: [],
 headers:{}
}, function (result) {
 console.log(result);
});

Parameter description

Name Type Description Optional Default value

operationType string RPC service name N

requestData array

Parameter of RPC request,
developers need to build it on
their own according to the
actual RPC interface

N

headers dictionary The headers of RPC request Y {}

gateway string Gateway address Y alipay gateway

compress boolean
Whether or not the request
gzip compressing is
supported

Y true

disableLimitView boolean

Whether or not to disable the
auto pop-up of traffic limit
window when the traffic of
RPC gateway is limited

Y false

Result

Result Type Description

result dictionary
The result of RPC response (The string values of
non-dictionary structure will be put into a dictionary
structure, the key is resData)

Errors

Error Description

10 Network error

11 Request timeout

Others Defined by mobilegw

Mobile Gateway Service User Guide·Client-side develop
ment guide

> Document Version: 20230209 16

Mobile Gateway Service provides the function of verifying server HTTP service signature to improve the security of data from gateway to server.

Mobile Gateway Service provides the function of verifying server HTTP service signature to improve the security of data from gateway to server.

After initiating the signature verification on a certain API group on the console, Mobile Gateway Service creates signature information for each API
request in the group. The public and private keys used in the signature can be created in the Mobile Gateway Service console.

After the server reads signature string, it calculates the local signature of the received request, and compares if the signature is consistent with the
received signature, thus judging if the request is legal.

Read signature
The signature calculated by mobile gateway is saved in the Header of Request , and the Header Key is X-Mgs-Proxy-Signature .

The secret key configured in API group is used to distinguish and obtain the Keys corresponding to different secret key values, and the Header Key is X-
Mgs-Proxy-Signature-Secret-Key .

Verify signature

Organize signature data

String stringToSign =
HTTPMethod + "\n" +
Content-MD5 + "\n" +
Url

 HTTPMethod : HTTPMethod with all characters in upper case, for example: PUT or POST .

 Content-MD5 : It indicates the MD5 value of a request Body. The MD5 value is calculated in the following methods:

i. If HttpMethod is not PUT or POST , then the MD5 value is a empty string "" , otherwise the step 2 applies.

ii. If the request has a Body, and the Body is Form, then the MD5 value is an empty string "" , otherwise the step 3 applies.

iii. Use the following method to calculate MD5. If the request has no Body, the bodyStream is string "null" .

String content-MD5 = Base64.encodeBase64(MD5(bodyStream.getbytes(“UTF-8”)));

Important: Even if content-MD5 is an empty string "" , the newline “\n” after content-MD5 in the signing method cannot be omitted. Namely, there
will be two consecutive “\n” in the signature.

 Url : It is assembled by Path , Query , and the Form parameter in Body. Suppose the request is in the format of http://ip:port/test/testSign?c=3&a=1
and the Form parameter is b=2&d=4 , then the assembling steps are as follows:

i. Obtain Path . Path is the part between ip:port and ? , for example: /test/testSign .

ii. If both the Query and Form parameter are empty, the Url is the Path . Otherwise, you need to continue the next step.

iii. Concatenate parameters. Sort the Query and Form parameters by key in lexicographic order, and then concatenate them in the format of
 Key1=Value1&Key2=Value2&...&KeyN=ValueN , for example: a=1&b=2&c=3&d=4 .

Important: The Query or Form parameters may have multiple values, but only the first value is used.

iv. Concatenate Url . Url is Path?Key1=Value1&Key2=Value2&...&KeyN=ValueN , for example /test/testSign?a=1&b=2&c=3&d=4 .

Verify signature
Use MD5 algorithm:

 String sign = "xxxxxxx";// The signature passed from mobile gateway
 String salt ="xxx"; //MD5 Salt

 MessageDigest digest = MessageDigest.getInstance("MD5");
 String toSignedContent = stringToSign + salt;
 byte[] content = digest.digest(toSignedContent.getBytes("UTF-8"));
 String computedSign = new String(Hex.encodeHexString(content));

 boolean isSignLegal = sign.equals(computedSign) ? true : false;

Use RSA algorithm:

 String sign = "xxxxxxx"; // The signature passed from mobile gateway
 String publicKey ="xxx"; // The RSA public key of mobile gateway

 PublicKey pubKey = KeyReader.getPublicKeyFromX509("RSA", new ByteArrayInputStream(publicKey.getBytes()));
 java.security.Signature signature = java.security.Signature.getInstance("SHA1WithRSA");
 signature.initVerify(pubKey);
 signature.update(stringToSign.getBytes("UTF-8"));

 boolean isSignLegal = signature.verify(Base64.decodeBase64(sign.getBytes(""UTF-8"")));

Code example
For more details, please refer to HttpSignUtil.java.

5.Server-side development guide
5.1. Backend signature verification

5.2. Service definition and development

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 17

https://static-aliyun-doc.oss-cn-hangzhou.aliyuncs.com/file-manage-files/zh-CN/20220718/hskk/HttpSignUtil.java

This document is specific for the business systems integrating gateway SPI, such as the business systems which provide mpaaschannel or dubbo API
services externally. For the business systems integrating HTTP API, it is unnecessary to refer to this document.

Introduce the second-party package of gateway
Introduce the following second-party package (ignore if the original project has dependency already) in the pom.xml file of the project.

All basic dependencies must be introduced. You can select MPC , Dubbo , HRPC , or TR dependency according to the API type that is to be integrated.

Note

Before introducing the dependencies, make sure that you have completed Maven configuration.

Basic dependencies

<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-spi-adapter</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-log</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>com.alipay.hybirdpb</groupId>
 <artifactId>classparser</artifactId>
 <version>1.2.2</version>
</dependency>
<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.5</version>
</dependency>
<dependency>
 <groupId>com.alibaba</groupId>
 <artifactId>fastjson</artifactId>
 <version>1.2.69_noneautotype</version>
</dependency>

MPC dependencies

<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-spi-mpc</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>com.alipay.mpaaschannel</groupId>
 <artifactId>common</artifactId>
 <version>2.3.2018071001</version>
</dependency>
<dependency>
 <groupId>com.alipay.mpaaschannel</groupId>
 <artifactId>tenant-client</artifactId>
 <version>2.3.2018071001</version>
</dependency>

Dubbo dependencies

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 18

<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-spi-dubbo</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>org.apache.dubbo</groupId>
 <artifactId>dubbo</artifactId>
 <version>2.7.8</version>
</dependency>

Note: For dubbo, use the native version. Don’t use dubbox, because it is incompatible.

HRPC dependencies

<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-spi-hrpc</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-registry</artifactId>
 <version>1.0.5.20200930</version>
</dependency>
<dependency>
 <groupId>hessian</groupId>
 <artifactId>hessian</artifactId>
 <version>3.3.6</version>
</dependency>

TR dependencies

<dependency>
 <groupId>com.alipay.gateway</groupId>
 <artifactId>mobilegw-unify-spi-sofa</artifactId>
 <version>1.0.5.20200930</version>
</dependency>

Define and implement service interface
Define the service interface com.alipay.xxxx.MockRpc based on business requirement, and provide the implementation com.alipay.xxxx.MockRpcImpl for this
interface.

Notes:

Try to define the incoming parameter in the method as VO. In this way, if you want to add any parameter later, you can add the parameters in the VO
without changing the method declaration format.

For relevant specifications about service interface definition, see Service interface definition specifications.

Define operationType
Add @OperationType annotation on the service interface’s method to define the interface that is to publish services.

 @OperationType contains three parameters:

 value : The unique identifier of RPC service; definition rule is organization.product domain.product.sub-product.operation .

 name : Interface name.

 desc : Interface description.

Notes:

 value must be globally unique in the gateway, you would better to define it as detailed as possible. otherwise, it might be the same as the value of
other business party, which might lead service registration failure.

For convenient maintenance, ensure that the three fields of @OperationType are completely entered.

Sample:

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 19

public interface MockRpc {

 @OperationType("com.alipay.mock")
 Resp mock(Req s);

 @OperationType("com.alipay.mock2")
 String mock2(String s);
}

public static class Resp {
 private String msg;
 private int code;

 // ignore getter & setter
}

public static class Req {
 private String name;
 private int age;

 // ignore getter & setter
}

Register API service
Register the pre-defined API service to registration center through the SPI package provided by the gateway.

Register MPC API service
The following parameters are required for registering MPC API service:

 registryUrl : It refers to the address of the registration center. For the shared Ant Financial Cloud registration center, the address is 116.62.81.246 .

 appName : It refers to the business-side application name.

 workspaceId : It refers to the workspaceId of the workspace where the application is.

 projectName : It refers to the projectName of the tenant where the application is.

 privateKeyPath : The ClassPath used to store RSA key, which is used to verify the legality when the gateway establishes connection with mpaaschannel.
Recommended: Put the RSA key in /META-INF/config/rsa-mpc-pri-key-{env}.der where {env} indicates the workspace, such as dev, sit, and prod.

Configure public key
Go to the mAppCenter of the corresponding workspace, and click Interface Keys > Configure from the navigation bar on the left to configure the
corresponding RSA public key of the private key.

Follow the instructions below to configure the RSA public/private keys. The public key must be configured on mAppCenter while the private key file in
 ${privateKeyPath} of the backend application:

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 20

* The way to generate key pair :
* ### Generate a 2048-bit RSA private key
*
* $ openssl genrsa -out private_key.pem 2048
*
* ### Convert private Key to PKCS#8 format (so Java can read it)
*
* $ openssl pkcs8 -topk8 -inform PEM -outform DER -in private_key.pem -out private_key.der -nocrypt
*
* ### Output public key portion in DER format (so Java can read it)
*
* $ openssl rsa -in private_key.pem -pubout -outform DER -out public_key.der
*
* ### change to base64:
*
* ## Go to the backend application to configure the generated private key
* $ openssl base64 -in private_key.der -out private_key_base64.der
*
* ## Go to Interface key in mappcenter to configure the generated public key
* $ openssl base64 -in public_key.der -out public_key_base64.der
*
* ### remember to clear the whitespace chars and line breaks before submit!!!

Register through Spring
1. In the Spring configuration file of the corresponding bundle, declare the pre-defined service’s Spring bean:

 <bean id="mockRpc" class="com.alipay.gateway.spi.mpc.test.MockRpcImpl"/>

2. Declare the Starter bean that is to expose the service in the Spring configuration file of the corresponding bundle.

 MpcServiceStarter : This interface registers all beans with @OperationType to the specified registration center through mpaaschannel protocol.

 <bean id="mpcServiceStarter" class="com.alipay.gateway.spi.mpc.MpcServiceStarter">
 <property name="registryUrl" value="${registy_url}"/>
 <property name="appName" value="${app_name}"/>
 <property name="workspaceId" value="${workspace_id}"/>
 <property name="projectName" value="${project_name}"/>
 <property name="privateKeyPath" value="${privatekey_path}"/>
 </bean>

Register through Spring Boot
Spring Boot is essentially the same as Spring, and the only difference is that the registration method is changed to annotation, without configuring xml file.

1. Register the defined service as bean through annotation: @Service
 public class MockRpcImpl implements MockRpc{
 }

2. Define the starter that is to expose service through annotation:

 @Configuration
 public class MpaaschannelDemo {
 @Bean(name="mpcServiceStarter")
 public MpcServiceStarter mpcServiceStarter(){
 MpcServiceStarter mpcServiceStarter = new MpcServiceStarter();
 mpcServiceStarter.setWorkspaceId("${workspace_id}");
 mpcServiceStarter.setAppName("${app_name}");
 mpcServiceStarter.setRegistryUrl("${registy_url}");
 mpcServiceStarter.setProjectName("${project_name}");
 mpcServiceStarter.setPrivateKeyPath("${privatekey_path}");
 return mpcServiceStarter;
 }
 }

Configure MPC log
For better troubleshooting, you can configure the logs related to MPC on demand. For example, to configure log4j :

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 21

<!-- [MPC Logger] tenant link, recording the association, settings -->
 <appender name="MPC-TENANT-LINK-APPENDER" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="file" value="${log_root}/mpaaschannel/tenant-link.log"/>
 <param name="append" value="true"/>
 <param name="encoding" value="${file.encoding}"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d [%X{remoteAddr}][%X{uniqueId}] %-5p %c{2} - %m%n"/>
 </layout>
 </appender>

 <!-- [MPC Logger] records stream-related data (including a pair of tenant stream <-> component stream) -->
 <appender name="MPC-STREAM-DATA-APPENDER" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="file" value="${log_root}/mpaaschannel/stream-data.log"/>
 <param name="append" value="true"/>
 <param name="encoding" value="${file.encoding}"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d [%X{remoteAddr}][%X{uniqueId}] %-5p %c{2} - %m%n"/>
 </layout>
 </appender>

<!-- [MPC Logger] tenant log -->
 <logger name="TENANT-LINK-DIGEST" additivity="false">
 <level value="INFO" />
 <appender-ref ref="MPC-TENANT-LINK-APPENDER" />
 <appender-ref ref="ERROR-APPENDER" />
 </logger>

 <!-- [MPC Logger] component log -->
 <logger name="STREAM-DATA-DIGEST" additivity="false">
 <level value="INFO" />
 <appender-ref ref="MPC-STREAM-DATA-APPENDER" />
 <appender-ref ref="ERROR-APPENDER" />
 </logger>

Register Dubbo API service
The following parameters are required for registering Dubbo API service:

 registryUrl : It refers to the address of the registration center.

 appName : It refers to the business-side application name.

Register through Spring
1. In the Spring configuration file of the corresponding bundle, declare the pre-defined service’s Spring bean:

 <bean id="mockRpc" class="com.alipay.gateway.spi.mpc.test.MockRpcImpl"/>

2. In the Spring configuration file of the corresponding bundle, declare the starter bean (DubboServiceStarter) that is to expose service. This interface will
register all beans containing @OperationType to the specified registration center through Dubbo protocol.

<bean id="dubboServiceStarter" class="com.alipay.gateway.spi.dubbo.DubboServiceStarter">
 <property name="registryUrl" value="${registy_url}"/>
 <property name="appName" value="${app_name}"/>
</bean>

Register through Spring Boot
Spring Boot is essentially the same as Spring, and the only difference is that the registration method is changed to annotation, without configuring xml file.

1. Register the defined service as bean through annotation: @Service
public class MockRpcImpl implements MockRpc{
}

2. Define the starter that is to expose service through annotation:

@Configuration
public class DubboDemo {
 @Bean(name="dubboServiceStarter")
 public DubboServiceStarter dubboServiceStarter(){
 DubboServiceStarter dubboServiceStarter = new DubboServiceStarter();
 dubboServiceStarter.setAppName("${app_name}");
 dubboServiceStarter.setRegistryUrl("${registy_url}");
 return dubboServiceStarter;
 }
}

Register HRPC API service
The following parameters are required for registering HRPC API service:

 registryUrl : It refers to the address of the registration center, required.

 appName : It refers to the business-side application name, required.

 serverPort : It refers to the listening port of HRPC service, it defaults to 7079, optional.

Register through Spring

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 22

1. In the Spring configuration file of the corresponding bundle, declare the pre-defined service’s Spring bean:

 <bean id="mockRpc" class="com.alipay.gateway.spi.mpc.test.MockRpcImpl"/>

2. In the Spring configuration file of the corresponding bundle, declare the starter bean (HRpcServiceStarter) that is to expose service. This interface will
register all beans containing @OperationType to the specified registration center through HRPC protocol.

<bean id="hrpcServiceStarter" class="com.alipay.gateway.spi.hrpc.HRpcServiceStarter">
 <property name="registryUrl" value="${registy_url}"/>
 <property name="appName" value="${app_name}"/>
 <property name="serverPort" value="${serverPort (optional)}"/>
</bean>

Register through Spring Boot
Spring Boot is essentially the same as Spring, and the only difference is that the registration method is changed to annotation, without configuring xml file.

1. Register the defined service as bean through annotation:

 @Service
 public class MockRpcImpl implements MockRpc{
 }

2. Define the starter that is to expose service through annotation:

 @Configuration
 public class HRpcDemo {
 @Bean(name="hrpcServiceStarter")
 public HRpcServiceStarter hrpcServiceStarter(){
 HRpcServiceStarter hRpcServiceStarter = new HRpcServiceStarter();
 hRpcServiceStarter.setAppName("${app_name}");
 hRpcServiceStarter.setRegistryUrl("${registy_url}");
 hRpcServiceStarter.setServerPort("${serverPort (optional)}");
 return hRpcServiceStarter;
 }
 }

Note: The registry center used by HRPC is ZK, and there can be one or multiple registry URLs (separated with commas), for example:
“11.163.193.240:2181” or “11.163.193.240:2181,11.163.193.230:2181”.

Register TR API service
The following parameter is required for registering TR API service:

 appName : It refers to the business-side application name, required.

Register through Spring
1. In the Spring configuration file of the corresponding bundle, declare the pre-defined service’s Spring bean:

 <bean id="mockRpc" class="com.alipay.gateway.spi.mpc.test.MockRpcImpl"/>

2. In the Spring configuration file of the corresponding bundle, declare the starter bean (SofaServiceStarter) that is to expose service. This interface will
register all beans containing @OperationType to the specified registration center through TR protocol.

<bean id="SofaServiceStarter" class="com.alipay.gateway.spi.sofa.SofaServiceStarter">
 <property name="appName" value="${app_name}"/>
</bean>

Register through Spring Boot
Spring Boot is essentially the same as Spring, and the only difference is that the registration method is changed to annotation, without configuring xml file.

1. Register the defined service as bean through annotation:

@Service
public class MockRpcImpl implements MockRpc{
}

2. Define the starter that is to expose service through annotation:

@Configuration
public class TRDemo {
 @Bean(name="sofaServiceStarter")
 public SofaServiceStarter sofaServiceStarter(){
 SofaServiceStarter sofaServiceStarter = new SofaServiceStarter();
 sofaServiceStarter.setAppName("${app_name}");
 return sofaServiceStarter;
 }
}

Result
When you complete the above steps, you can operate the defined API services in gateway, and expose them to the client. For more information, see
Register API.

This topic gives an introduction on the related helper classes involved in Mobile Gateway Service (MGS), including interceptor class and MobileRpcHolder ,
and the corresponding error codes in MSG use.

5.3. Instructions on gateway helper classes

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 23

Implement the function of interceptors
The interceptors are only applicable for non-HTTP services.

 Mobilegw-unify-spi-adapter.jar actually calls the service method through Java reflection. The service method is also the method specified in
 OperatioinType . In the process of method invocation, the business system can implement the interceptors that are defined in SPI package to realize

extension.

The gateway SPI package defines two interceptors: AbstractMobileServiceInterceptor abstract class and MobileServiceInterceptor interface.

AbstractMobileServiceInterceptor
 MobileServiceInterceptor mainly provides four methods: beforeInvoke , afterInvoke (two types: one has the object returned by the business system as

incoming parameter and the other one has the JSON string converted from object as incoming parameter), throwsInvoke and getOrder .

As shown in the above figure, interception mainly takes place at the following points:

Before method invocation: Use the beforeInvoke method, which has a return value. If the return value of this method is not null, the gateway regards
the interception a success, skips the beforeInvoke method of other interceptors and the methods of the business system, and then directly goes to the
 afterInvoke method.

After method invocation: Use the afterInvoke method. There are two types of afterInvoke method. One takes the object returned by the business
system as incoming parameter. This method has no return value. Such method in all interceptors will be executed. The other one takes the JSON string as
incoming parameter, and this method can change the passed-in JSON data and return them. If the return value of this method is not null, the gateway
regards the interception a success, and skips the subsequent beforeInvoke methods.

Method exception: Use the throwsInvoke method. This method has no return value. Such method in all interceptors will be executed. The method will be
called in case of business system exception.

MobileServiceInterceptor
 MobileServiceInterceptor inherits the framework’s Ordered interface. Therefore, the interceptors that are implemented by the business system can be

executed in a specified order by implementing getOrder method. The smaller value, the higher execution priority.

Code sample
1. Encode your own interceptor class, inherit AbstractMobileServiceInterceptor class or implement MobileServiceInterceptor class.

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 24

1. Encode your own interceptor class, inherit AbstractMobileServiceInterceptor class or implement MobileServiceInterceptor class.

 public class MyInterceptor implements MobileServiceInterceptor {

 /*
 Parameter description
 Method: Method of the business system (method defined in @OperatioinType)
 args: An object array, namely the incoming parameters of the business system’s method. The number of the incoming parameters is the array size.
 The business system transforms the type based on demand in use.
 bean: The interface instance of the business system.
 Return value description:
 Object: Return data in the interceptor. If the return value is not null, then the gateway regards the interception a success, and will not invoke the business met
hod.
 Meanwhile, the gateway skips the `beforeInvoke` method of other interceptors, and executes the `afterInvoke` method in the interceptors.
 */

 @Override
 public Object beforeInvoke(Method method, Object[] args, Object target) {
 //Do Something
 return null;
 }

 /*
 *Parameter description
 *returnValue: Object returned by the business system
 * Other parameters are same as the above
 */
 @Override
 public void afterInvoke(Object returnValue, Method method, Object[] args, Object target) {
 //Note: The incoming parameter here is the object returned by the business system
 }

 @Override
 public String afterInvoke(String returnJsonValue, Method method, Object[] args, Object target) {
 //Note: The incoming parameter here is the JSON string that is converted from the object returned by the business system
 //New JSON data can be returned
 return null;
 }

 @Override
 public void throwsInvoke(Throwable t, Method method, Object[] args, Object target) {
 }

 @Override
 public int getOrder() {
 //Highest (with smallest value) and lowest (with largest value)
 return 0;
 }
 }

2. Publish the implemented MyInterceptor class, and make it a Bean.

Spring Boot:

Add annotation @service on the class.

@service
public class MyInterceptor implements MobileServiceInterceptor{}

Spring:

Make a declaration in the xml configuration file.

<bean id="myInterceptor" class="com.xxx.xxx.MyInterceptor"/>

MobileRpcHolder helper class
 MobileRpcHolder is a static helper class provided in mobilegw-unify-spi-adapter.jar . This helper class defines the relevant information of a request. The

main definition is as follows:

Map<String, String> session Save the request session
Map<String, String> header Save the request header related information
Map<String, String> context Save the context that is called by the gateway
String operationType Save the operationType of this request

Before the business system’s service (OperationType) is called, the SPI service will set the above information of MobileRpcHolder according to the
 MobileRpcRequest forwarded by the gateway. The information will be cleared after the OperationType is called.

The lifecycle of MobileRpcHolder is the whole service invocation process. The information will be cleared after service invocation.

The business system can set the information based on requirement, and the information always exists in the process of business service invocation. In the
invocation process, the business service can obtain that information. You can dynamically modify the information saved in obileRpcHolder before or after
the method invocation through the interceptors.

The following example illustrates how to use MobileRpcHolder .

Code sample
Here is an example of modifying and obtaining a session.

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 25

1. Modify a session.

Create an interceptor. For specific procedure, see the above example. The following step assumes to intercept before method invocation:

 @Override
 public Object beforeInvoke(Method method, Object[] args, Object target) {
 Map<String, String> session = MobileRpcHolder.getSession();
 session.put("key_test", "value_test");
 MobileRpcHolder.setSession(session);
 }

In this way, you can modify the session information in MobileRpcHolder .

2. Obtain a session.

The business system can obtain the session information from the service that is defined by itself.

 @OperationType("com.alipay.account.query")
 public String mock2(String s) {
 Map<String, String> session = MobileRpcHolder.getSession();
 }

For other information like header and context, the operation is the same as the above.

 // Obtain all information of header
 Map<String,String> headers = MobileRpcHolder.getHeaders();
 // The context here refers to the context in the request
 Map<String,String> context = MobileRpcHolder.getRequestCtx();
 // Obtain OperationType
 String opt = MobileRpcHolder.getOperationType();

MGS error codes
Mobile Gateway Service has a set of error code specifications. To learn more, see Gateway result codes.

What you have to note is BizException 6666 . This error is the exception thrown by the gateway upon business system exception.

To return other error codes when an error occurs, the business system can throw RpcException(ResultEnum resultCode) to control the error on RPC layer. For
example, resultCode=1001 , the error “have no access privilege” will be returned to the client.

Code sample

@Override
public String mock2(String s) throws RpcException {
 try{
 test();
 }catch (Exception e){
 throw new RpcException(IllegalArgument);
 }
 return "11111111";
}

Custom error codes
If the business system is to use the custom error codes, it cannot throw exceptions during service method invocation.

In case of service method exception, the status code 6666 is returned. When the client receives the status code, it regards that an error occurs in the
service and will not parse the data returned by the business system. The client parses the returned data only when receiving the status code 1000.

Therefore, the reasonable approach should be that the server and client appoint the specific error codes, catch all exceptions when invoking the service
method, and then put the custom error codes in the returned data. In this way, even if the business system has exceptions, the gateway still returns 1000.
Meanwhile, the client parses the returned data, and extracts the custom error codes.

Mobile Gateway Service User Guide·Server-side develo
pment guide

> Document Version: 20230209 26

Single request troubleshooting

1. Capture client-side request packets
Generally, Charles (recommended) or Fiddler tool is used to capture client-side packets. With the packet capture tool, you can find some critical data of the
RPC requests.

Here is an example of packet capture:

Example of request header:

Example of response header:

2. Query MGS log by TraceId
1. Obtain Mgw-TraceId from the response header.

2. In mPaaS console, select the target App, go to the Mobile Gateway > Gateway management> Tools > Trace analysis page, and enter the TraceId to parse
the corresponding MGS server IP and processing time of the request.

3. Connect MGS server through SSH, and then query the request-related logs by TraceId.

ssh -p2022 account@IP account/password
cd /home/admin/logs/gateway
grep #traceid# *.log

4. Analyze logs according to the Gateway logs and Gateway result codes.

Cluster GREP troubleshooting (for private cloud only)
Sometimes, you may need to search a certain log in MGS cluster. At this time, you can use the open-source PSSH tool.

1. Download PSSH tool.

2. Export the server IP list of MGS from Gamma platform to mgs_host.txt file, for example:

 log@10.2.216.33:2022
 log@10.2.216.26:2022
 log@10.2.216.25:2022

3. Run the following command:

6.Gateway exception troubleshooting

Mobile Gateway Service User Guide·Gateway except ion
t roubleshoot ing

> Document Version: 20230209 27

https://pypi.python.org/pypi/pssh/2.2.1

pssh -i -h mgs_host.txt -A -P 'grep "xxxx" /home/admin/logs/gateway/xxx.log'

Mobile Gateway Service User Guide·Gateway except ion
t roubleshoot ing

> Document Version: 20230209 28

How to troubleshoot in case of a call failure?
See Gateway exception troubleshooting.

What are the meanings of the result codes returned by APIs?
See Gateway result codes.

When OkHttp is referrenced, how to deal with the conflict between OKio and mPaaS?
To solve the conflict, perform the following steps:

1. Comment out the wire component of mPaaS.

mpaascomponents{
 excludeDependencies=['com.alipay.android.phone.thirdparty:wire-build']
}

2. Use the wire component provided on the Internet.

implementation 'com.squareup.wire:wire-lite-runtime:1.5.3.4@jar'

How to put parameters in POST body when sending a POST request by calling the MGS RPC interface through JSAPI?
First, you must correctly configure the POST body and corresponding data model for MGS. When sending a request through JSAPI, you need to take the POST
body as the value of _requestBody and put it in the requestData parameter, as shown in the following sample:

window.onload = function() {
 ready(function() {
 window.AlipayJSBridge.call('rpc', {
 operationType: 'MYAPI',
 requestData: [
 {"_requestBody":"{\"key1\":\"value1\",\"key2\":\"value2\"}"}],
 headers:{},
 getResponse: true
 }, function(data) {
 alert(JSON.stringify(data));
 });
 });
 }

7.FAQ

Mobile Gateway Service User Guide·FAQ

> Document Version: 20230209 29

This article introduces the result codes in the process of using the gateway to facilitate troubleshooting.

Result codes for gateway
1000 means that API call succeeded, while all other result codes indicat failures.

1001-5999 and 7000-7999 are gateway errors.

7000-7999 means that error occurrs in the signature verification or decryption performed by mobile security guard. See the Security Guard result codes
for troubleshooting.

Other than result codes, you can also check the Memo and tips fields in the response Header to learn more about the error.

Besides, AntStack users can check ~logsgatewaygateway-error.log on the gateway server for error details.

When an exception occurs, you can troubleshoot it with reference to Gateway exception troubleshooting.

Result code Description Explanation

1000 Processing succeeded Succeeded in calling the gateway API.

1001 Access denied
Incorrect Mock format, resultStatus missed; WAF
validation failed, or the user has no permission to
access the authentication interface.

1002 The maximum call times exceeded
If traffic limiting configuration is enabled, the
exception may occur when the traffic limit is
triggered.

1005 Unauthorized Authorization verification failed after enabling API
authorization.

2000 Login timed out If authorization verification function is enabled, the
exception may occur if you are not logged in.

3000 RPC interface doesn’t exist or is closed

In the workspace of the current workspaceId, the
mobile application of the appId has no API service
with such operationType configured, or the API
service is not in the Open status.

3001 Null request data
 requestData in the client-side requests is null.

Check if the client-side RPC works normally. For iOS
client, it is required to initialize gateway service.

3002 Incorrect data format
The RPC request format is incorrect. AntStack users
can check server log gateway-error.log for more
information.

3003 Data decryption failed Data decryption failed.

4001 Service request timed out

MGS timed out while calling the business system. It is
caused by high backend business system load. Check
the running condition of the backend system. If the
timeout setting is not appropriate, you can adjust it
appropriately.

Note: The timeout period is 3 seconds by default.

4002 Remote call on the business system failed
An exception occurred when MGS called the business
system. AntStack users can check server log
 gateway-error.log for more information.

4003 API group HOST exception
An UnknownHostException exception occurred
when MGS called HTTP business system. Check if the
domain name configured for the API group exists.

8.Reference
8.1. Gateway result codes

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 30

5000 Unknown exception Unknown errors. AntStack users can check server log
 gateway-error.log for more information.

7000 No public key available
Mobile App’s mobile security guard has no secret key
of the appId, or the gateway failed to obtain the
corresponding signing key of the appId.

7001 Not enough parameters for signature verification The gateway server-side signature verification
failed.

7002 Signature verification failed The gateway server-side signature verification
failed.

7003 Signature verification - Timeliness failure
The timestamp of API request parameter ts
exceeds the valid time set in the system. Check if the
client time is consistent with the system time.

7007 Signature verification - ts parameter is missing API request doesn’t provide the ts parameter for
signature verification.

7014 Signature verification - sign parameter is missing

API request doesn’t provide the sign parameter
for signature verification. Generally, the missing of
 sign parameter is caused by client-side signature

data failure. Check if the client-side mobile security
guard image is correct.

8002 Cross-domain pre-check request (CORS preflight) Cross-domain pre-check request.

Result codes for business system
For the following result codes, you can view the corresponding error information in the business systems’ servers.

You can find specific information about the exceptions by checking ~/logs/mobileservice/monitor.log log on each business system.

Result code Applicable protocol Description Explanation

6000 MPC, DUBBO RPC - target service not found

Cannot find the released service; the
server failed to access the service; or
the service has been migrated to
somewhere else.

6001 MPC, DUBBO RPC - target method not found Cannot find the method in the
released service.

6002 MPC, DUBBO RPC - Incorrect number of parameters
The number of input parameters is not
consistent with the number of
declared parameters.

6003 MPC, DUBBO RPC - target method is inaccessible The target method cannot be called.

6004 HTTP, MPC, DUBBO RPC - JSON parsing exception

HTTP: Failed to convert RPC
parameters to backend HTTP request
parameters.

MPC/DUBBO: Failed to deserialize RPC
JSON data to business parameter
objects.

6005 MPC, DUBBO RPC - Invalid parameters exist when
the system calls target method

Invalid parameters exist in call
reflection.

6007 MPC, DUBBO RPC - Login verification service
unavailable

You haven’t implemented the login
verification interface in SPI package,
or the login verification interface is
incorrectly configured.

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 31

6666 HTTP, MPC, DUBBO RPC - Business exception

HTTP: The HTTP status code returned
by the backend system is not 200.

MPC/DUBBO: The exception reported
by the business system. The
exceptions that cannot be handled by
RPC are regarded as business
exceptions.

Result codes for Android client

Result code Description Prompt

0 Unknown error Unknown error. Please try again later.

1 Client failed to find the communication object, no
Transport available. Network error. Please try again later.

2
Client has no network access. For example, the user
shuts down network or disabled the application’s
network access.

Failed to connect to network.

3 SSL relevant errors, including SSL handshake error,
SSL certificate error

Incorrect client certificate. Check if the mobile time
setting is correct.

4 Client network connection timeout; TCP connection
timeout. Currently, the timeout period is 10s. Poor network connection

5 Slow client network connection, Data read/write
timeout, socketTimeout Poor network connection

6 No response from server, NoHttpResponseException Network error. Please try again later.

7 Client network IO error, corresponds to IOException Network error. Please try again later.

8 Client network request scheduling error, execution
thread interrupted Network error. Please try again later.

9 Client processing error, including serialization error,
annotation processing error, thread execution error Network error. Please try again later.

10 Client data deserialization error, incorrect server
data format Network error. Please try again later.

13
Request interruption error. For example, when the
thread is interrupted, the request is interrupted
accordingly

Network error. Please try again later.

15

Client network authorization error,
HttpHostConnectException, Connection to “xxx”
refused, no network access, or the corresponding
server refused connection.

Failed to connect to network.

16 DNS parse error Failed to connect to network, please try again later.

18
Network limited; client request limited. When the
volume of client requests exceeds the threshold, the
network requests will be limited.

Network has been limited. Please try again later.

code >= 400 & code < 500 HTTP response code is 4xx Failed to connect to network.

400 > code >= 100 & 500 < code < 600 Reponse codes for HTTP failure Failed to connect to network. Please try again later.

The security guard error codes listed in this article are applicable to both Android and iOS operating systems. The error codes are divided into the following
three types according to different error types:

8.2. Security guard result codes

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 32

Common error codes

Static data encryption and decryption error codes

Security signature API error codes

If an error occurs, error information SG ERROR: xxxx is displayed in the Xcode console. This topic describes related error codes.

Common error codes

Error code Description

101 Incorrect parameter.

102 Main plug-in initialization failed.

103
Dependent plug-ins are not introduced. The system will provide the name of the
missing plug-ins while printing the error code. Please introduce the plug-in as
prompted.

104
Failed to load plug-ins that are introduced. Generally, this error code is printed
when -all_load or -ObjC is not added to other linker flags. You can add it to
resolve this error.

105
The required plug-in is introduced, but its dependent plug-in is not. The system
will provide the name of the missing plug-in while printing the error code.
Introduce the plug-in as prompted.

106

The required plug-in is introduced, but its dependent plug-in does not meet the
version requirement. The system will provide the required version number of the
dependent plug-in while printing the error code. Introduce the dependent plug-in
of the correct version as prompted.

107 The required plug-in is introduced, but it does not meet the version requirement.

108 The required plug-in is introduced, but its dependent resource is not.

109 The required plug-in is introduced, but its dependent resource does not meet the
version requirement.

121 Image file error. Generally, this error code is printed when the bundle ID used for
generating the image file is different from that of the App.

122 Image file not found. Ensure that the image file exists in the project directory.

123 Incorrect image file format. Generate the image file again.

124 The image version is earlier than required.

125 init with authcode Initialization error.

199 Unknown error. Try again.

201 Incorrect parameter.

202 Image file error. Generally, this error code is printed when the bundle ID used for
generating the image file is different from that of the App.

203 Image file not found. Ensure that the image file exists in the project directory.

204 Incorrect image file format. Generate the image file again.

205 Incorrect image file content. Generate the image file again.

206 The key in the parameter is not found in the image file. Please use an existing
key.

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 33

207 The input key is invalid.

208 Insufficient memory. Try again.

209 The key of the specified index does not exist.

212 The version of the image file is earlier than required. Upgrade it.

299 Unknown error. Try again.

Static data encryption and decryption error codes

Error code Description

301 Incorrect parameter.

302
Image file error. Generally, this error code is printed when the APK signature
used for generating the image file is different from that of the App. Use the APK
signature of the App to generate the image file again.

303 Image file not found. Ensure that the image file exists in res\drawable .

304

Incorrect image file format. Generate the image file again.

A common scenario where this error occurs is that second-party images are used
together with third-party images, while they are incompatible with each other
and must be generated separately.

305 Incorrect image file content. Generate the image file again.

306 The key in the parameter is not found in the image file. Use an existing key.

307 The input key is invalid.

308 Insufficient memory. Try again.

309 The key of the specified index does not exist.

310 The data cannot be decrypted.

311 The data to be decrypted does not match the key.

312 The version of the image file is earlier than required. Generate an image file of a
later version.

399 Unknown error. Try again.

401 Incorrect parameter.

402 Insufficient memory. Try again.

403 Failed to obtain system attributes. Ensure that no software blocks this operation.

404
Failed to obtain the key in the image file. Ensure that the format and content of
the image file are correct.

405 Failed to obtain the dynamic encryption key. Try again.

406 The format of the data to be decrypted does not meet the decryption
requirements.

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 34

407
The data to be decrypted does not meet the decryption requirements. Ensure
that the data is generated after dynamic encryption by Security Guard on this
device.

499 Unknown error. Try again.

501 Incorrect parameter.

502 Insufficient memory. Try again.

503 Failed to obtain system attributes. Ensure that no software blocks this operation.

504 Failed to obtain the key in the image file. Ensure that the format and content of
the image file are correct.

505 Failed to obtain the dynamic encryption key. Try again.

506 The data cannot be decrypted.

507 The data to be decrypted does not match the key. Try again.

508 No value is found for the input key.

599 Unknown error. Try again.

Security signature API error codes

Error code Description

601 Incorrect parameter.

602 Insufficient memory. Try again.

606 When the top signature with a seed key is used, the corresponding seed secret is
not found.

607 yw_1222.jpg image file error. Generally, this error code is printed when the
bundle ID used for generating the image file is different from that of the App.

608

Image file yw_1222.jpg not found. Ensure that the image file exists in the
project directory. If it exists, ensure that the base64Code field in the
 meta.config file of the project is specified. If the field is not specified, manually

generate the yw_1222.jpg image file again.

609

 yw_1222.jpg image file is in an incorrect format. Generate the image file again.

A common scenario where this error occurs is that second-party images are used
together with third-party images, while they are incompatible with each other
and must be generated separately.

610 yw_1222.jpg image file contains incorrect content. Generate the image file
again.

611 The key in the parameter is not found in the image file. Use an existing key.

615 The version of the image file is earlier than required. Generate an image file of a
later version.

699 Unknown error. Try again.

8.3. Gateway log instructions
8.3.1. Gateway server logs

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 35

Only private cloud users have the permission to check gateway logs in the server.

Only private cloud users have the permission to check gateway logs in the server.

API summary log
Log path: ~/logs/gateway/gateway-page-digest.log

Log printing time

Request address

Response

Result (Y/N)

Time cost (ms)

operationType

System name

appId

workspaceId

Result code

Client productId

Client productVersion

Channel

User ID

Device ID

UUID

Client trackId

Client IP

Network protocol: HTTP or HTTP2

Data protocol: JSON or PB

Request size (byte)

Response size (byte)

Pressure test identifier

TraceId: The unique identifier of request. It can link up the summary log, detail log and exception log.

cpt identifier

Client system type

Back-end system time cost

clientIp type: 4 or 6

RPC protocol version: 1.0 or 2.0

Format:

 T ime - (request address,response,result (Y/N),time cost,operationType,system name,appId,workspaceId,result code,client productId,client productVersion,channel,user
ID,device ID,UUID,client trackId,client IP,network protocol,data protocol,request size,response size,whether pressure test has been done,TraceId,whether it is a component
API,Client system type,Back-end system time cost,IP protocol version,RPC protocol version)

Sample:

 2020-06-03 14:14:08,001 - (/mgw.htm,response,Y,61ms,alipay.mcdp.space.initSpaceInfo,-,84EFA9A281942,default,1000,-,-,-,-
,Wz4Zak5peDgDAGRNW5rFFGhT,Wz4Zak5peDgDAGRNW5rFFGhTN9uqCLa,Wz4Zak5peDgDAGRNW5rFFGhTN9uqCLa,223.104.210.136,HTTP,JSON,2,2406,F,0a1d76671591164847940829820658,T,ANDROID,61,4,2.0)

API detailed log
Log path: ~/logs/gateway/gateway-page-detail.log

The detailed log is divided into two categories:

Request log: [request]

Response log: [response]

Request log
Log printing time

Client IP

TraceId

Log level

Log type: request

operationType

appId

workspaceId

requestData

sessionId

did: Device ID

contentType

mmtp: T or F, indicating whether to use MMTP protocol or not

async: T or F, indicating whether to implement asynchronous call

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 36

Response log
Log printing time

Client IP

TraceId

Log level

Log type: response

operationType

appId

workspaceId

responseData

resultStatus: Result code

contentType

sessionId

did: Device ID

mmtp: T or F, indicating whether to use MMTP protocol or not

async: T or F, indicating whether to implement asynchronous call

Sample:

2017-12-21 15:37:10,208 [100.97.90.113][79c731d51513841830208829314258] INFO - [request]operationType=com.alipay.gateway.test,appId=2A9ADA1045,workspa
ceId=antcloud,requestData=***,sessionId=-,did=WjtkmWe1uHsDADl7BEleyK2L,contentType=JSON,mmtp=F,async=T

2017-12-21 15:37:10,229 [][79c731d51513841830208829314258] INFO - [response]operationType=com.alipay.gateway.test,appId=2A9ADA1045,workspaceId=antclou
d,responseData=***,resultStatus=1000,contentType=JSON,sessionId=-,did=WjtkmWe1uHsDADl7BEleyK2L,mmtp=F,async=T

API statistical log
Log path: ~/logs/gateway/gateway-page-stat-s.log

Log printing time

operationType

appId

workspaceId

Result: Y/N

Result code

Pressure test identifier

Total requests

Total time cost of requests (ms)

Format:

 T ime - operationType,appId,workspaceId,result (Y/N),result code,Pressure test identifier (T/F),total requests,total time cost of requests (ms)

Sample:

 2017-12-21 15:34:58,419 - com.alipay.gateway.test,2A9ADA1045,antcloud,Y,1000,F,1,3

Gateway thread statistical log
Log path: ~/logs/gateway/gateway-threadpool.log

Log printing time

Thread name

Number of active threads

Number of threads in the current thread pool

Historical maximum number of created threads

Number of core threads

Maximum number of threads

Task queue size

Remaining queue capacity

Format:

 T ime [thread name,ActiveCount,PoolSize,LargestPoolSize,CorePoolSize,MaximumPoolSize,QueueSize,QueueRemainingCapacity]

Sample:

 2017-12-21 16:33:32,617 [gateway-executor,0,80,80,80,400,0,1000]

Gateway configuration log
Log path: ~/logs/gateway/gateway-config.log

The log records the notifications related with gateway configuration change.

Gateway default log
Log path: ~/logs/gateway/gateway-default.log

The events that haven’t been assigned to any specific log will be printed in this log.

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 37

Gateway error log
Log path: ~/logs/gateway/gateway-error.log

The log records errors and exception stacks.

The log description in this section is specific for the business systems which have integrated mpaasgw-spi-mpc or mpaasgw-spi-dubbo .

API summary log
Log path: ~/logs/mobileservice/page-digest.log

Log printing time

operationType

Client productId

Client productVersion

Time span (ms)

Result (Y/N)

Result code

uniqueId

Format:

 T ime - (operationType,productId,productVersion,time span,result (Y/N),result code,uniqueId)

Sample:

 2017-09-12 11:15:57,700 - (com.alipay.gateway.test,ANT_CLOUD_APP,3.0.0.20171214,36ms,Y,1000,79c731d5150518615768657974443)

SPI boot log
Log path: ~/logs/mobileservice/boot.log

The boot log records the registration and startup process of the business system mobileservice . The process falls into the following stages:

Start-To-Register-Service: Start parsing API service interface

Start-To- Analyze- Method: Start parsing methods in the API service interface

Analyze-Method-Parameter: Parse method parameters

Method-Info: Method information

Registered-OperationType: Complete registering single API operationType

Register-Service-Success: Complete registering all API operationType in the interface

You can check if operationType is successfully registered by viewing this log.

Sample:

2017-12-20 11:25:59,746 [Start-To-Register-Service] target: com.alibaba.mpaasgw.biz.shared.rpctest.MockRpcImpl@5b490d5e, interface: interface com.alibaba.mpaa
sgw.biz.shared.rpctest.MockRpc

2017-12-20 11:25:59,771 [Start-To-Analyze-Method] method=mock

2017-12-20 11:25:59,780 [Analyze-Method-Parameter] parameters=["s"]

2017-12-20 11:25:59,839 [Method-Info] MethodInfo[paramCount=1,paramType={class com.alibaba.mpaasgw.biz.shared.rpctest.MockRpc$Req},paramNames={s},returnT
ype=class com.alibaba.mpaasgw.biz.shared.rpctest.MockRpc$Resp,target=com.alibaba.mpaasgw.biz.shared.rpctest.MockRpcImpl@5b490d5e,method=public abstract co
m.alibaba.mpaasgw.biz.shared.rpctest.MockRpc$Resp com.alibaba.mpaasgw.biz.shared.rpctest.MockRpc.mock(com.alibaba.mpaasgw.biz.shared.rpctest.MockRpc$Req),i
nterfaceClass=interface com.alibaba.mpaasgw.biz.shared.rpctest.MockRpc]

2017-12-20 11:25:59,839 [Registered-OperationType] operationType=com.alipay.sofa.mock

2017-12-20 11:25:59,840 [Register-Service-Success] target=com.alibaba.mpaasgw.biz.shared.rpctest.MockRpcImpl@5b490d5e, interface=interface com.alibaba.mpaas
gw.biz.shared.rpctest.MockRpc

API monitor log
Log path: ~/logs/mobileservice/monitor.log

The API monitor log records API requests, including the API requests’ debug log and the exception stacks in case of errors.

SPI default log
Log path: ~/logs/mobileservice/common-default.log

The events that haven’t been assigned to any specific log will be printed in this log.

SPI error log
Log path: ~/logs/mobileservice/common-error.log

The log records errors and exception stacks.

Given the limitations on mobile development environment (especially iOS system) and to keep simple interface definition, you are not allowed to use the
full collection of Java syntax when defining mobile service interfaces on servers. The interface definition specifications involve the following three
categories:

8.3.2. Gateway SPI logs

8.4. Service interface definition specifications

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 38

Given the limitations on mobile development environment (especially iOS system) and to keep simple interface definition, you are not allowed to use the
full collection of Java syntax when defining mobile service interfaces on servers. The interface definition specifications involve the following three
categories:

Specifications for internally supported data classes: Applicable for the supported Java native classes and wrapper classes.

Specifications for user-defined interface classes: Applicable for the user-defined interfaces, including the method declaration of API call.

Specifications for user-defined entity classes: Applicable for the user-defined entity classes (including field declaration). Method parameters or returned
value, and other user-defined entity classes will be referenced.

Specifications for internally supported data classes

Unsupported data types
Container type cannot be multilayer nested.

List or Map must have generic information.

The generic information of List/Map cannot be array.

Single byte is not supported. Byte data byte [] is supported.

Object array is not supported. You must replace it with List.

Attribute name cannot be data or description , otherwise it might conflict with iOS attribute.

The key of Map type must be String.

Type cannot be abstract class.

Type cannot be interface class.

Incorrect example:

public class Req {
 private Map<String,List<Person>> map; //Container type cannot be multilayer nested.
 private List<Map<Person>> list; //Container type cannot be multilayer nested.
 private List list1; //List or Map must have generic information.
 private Map map1; //List or Map must have generic information.
 private List<Person[]> listArray; //The generic information of List/Map cannot be array.
 private byte b; //It cannot be single byte.
 private Person[] personArray; //Object array is not supported. You must replace it with List.
 private String description; //Attribute name cannot be `description`.
}

Supported data types

boolean, char, double, float, int, long, short
java.lang.Boolean
java.lang.Character
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String
java.util.List (hereinafter referred to as "List"), but it must use type parameter and cannot use its concrete sub classes.
java.util. Map (hereinafter referred to as " Map"), but it must use type parameter and cannot use its concrete sub classes. The key type must be string.
Enum
byte[]

Correct example:

public class Req {
 private String s = "ss";
 private int i;
 private double d;
 private Long l;
 private long l1;
 private boolean b;
 private List<String> stringList;
 private List<Person> personList;
 private Map<String,Person> map;
 private byte[] bytes;
 private EnumType type;
}

public class Person {
 private String name;
 private int age;

Specifications for user-defined interface classes

Parameters of method
Reference not allowed for:

Enum type

Generic types except Map, List, and Set mentioned above

Abstract class

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 39

Interface class

Native array

Reference allowed for:

Concrete entity class. The reference type and actual object type must keep consistent. It is not allowed to use parent class to point to sub class objects.

Internally supported data class, but the collection types such as array, Map, List, and Set cannot be nested.

Incorrect example:

Map<String,String[]>
Map<String,List<Person>>(Person is a concrete entity class)
List<Map<String,Persion>>
List<Persion[]>

Returned value of method
Reference not allowed for:

Enum type

Generic types except Map, List, and Set mentioned above

Abstract class

Interface class

Native array

Reference allowed for:

Concrete data class. The reference type and actual object type must keep consistent. It is not allowed to use parent class to point to sub class objects.
For example, you cannot use Object reference to point to other objects.

Note

Note: If the parent class is a concrete class, the generation tool cannot detect the error of such class.

Internally supported data class, see the content at the beginning of this article. The collection types such as array, Map, List, and Set cannot be nested.
See the example mentioned above.

Definition of method
Use @OperationType annotation. The method without this annotation will be ignored.

The method cannot be overloaded.

Limitations on code generation tools
Allow the inheritance that is defined in the interface class, but the hierarchical relations will be merged.

Allow but ignore the variables that are defined in the interface class.

Allow but ignore the method declaration in the interface class.

One source file can only contain the definition of one interface class, and the definition of other classes (internal class, anonymous class, etc.) are not
allowed.

The interface class defines itself and the types it references must be the internally supported data class, or can obtain the definition from source codes.

Specifications for user-defined entity classes

Definition of field
Reference not allowed for:

Enum type

Generic types except Map, List, and Set mentioned above

Abstract class

Interface class

Native array

Reference allowed for:

Concrete entity class. The reference type and actual object type must keep consistent. It is not allowed to use parent class to point to sub class objects.

Internally supported data class, but the collection types such as array, Map, List, and Set cannot be nested. See the example mentioned above.

The attributes with modifier including transient will be ignored.

Constants defined by using final static int . Other constants that don’t meet this requirement or static variables will be ignored.

Note

It is not recommended to define the member variables beginning with is.

Definition of class
A class can inherit from other entity class.

Ignore its method declaration. The generation tool will automatically generate setter/getter method based on the entity class’ fields.

Limitations on code generation tools
The attribute declaration must be one per line.

Allow but ignore the interfaces that are implemented by user-defined entity class.

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 40

One source file can only contain the definition of one user-defined entity class, and the definition of other classes (internal class, anonymous class, etc.)
are not allowed.

The interface class defines itself and the types it references must be the internally supported data class, or can obtain the definition from source codes.

You can check the key generation methods based on your business requirement. The keys include RSA key, ECC key, and SM2 key.

Prerequisites
You have downloaded and installed OpenSSL tool (V1.1.1 or later version) from OpenSSL official website.

Generate RSA key
1. Open the OpenSSL tool, and run the following command line to generate a RSA private key. You can select to generate a 1024-bit or 2048-bit private key:

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_keygen_bits:2048

2. Generate RSA public key based on the RSA private key:

openssl rsa -pubout -in private_key.pem -out public_key.pem

Generate ECC key
1. Open the OpenSSL tool, and run the following command line to generate an ECC key pair. You must select secp256k1 curve.

openssl ecparam -name secp256k1 -genkey -noout -out secp256k1-key.pem

2. Generate ECC public key based on secp256k1-key.pem key pair:

openssl ec -in secp256k1-key.pem -pubout -out ecpubkey.pem

Generate SM2 key
1. Open OpenSSL, and run the following command lin to generate SM2 private key sm2-key.pem .

openssl ecparam -name SM2 -genkey -noout -out sm2-key.pem

2. Generate the SM2 public key sm2pubkey.pem based on the private key sm2-key.pem .

openssl ec -in sm2-key.pem -pubout -out sm2pubkey.pem

To prevent client requests from being tampered or forged, a signature mechanism is used for RPC requests. The RPC module automatically implements the
signing functions.

To prevent client requests from being tampered or forged, a signature mechanism is used for RPC requests. The RPC module automatically implements the
signing functions.

The basic signing and signature verification process is as follows:

1. Convert the requestBody content to a character string.

2. Use the Security Guard module to sign the character string with the encryption key stored in the encryption image (Security Guard image).

3. Send the encrypted signature in the request to the gateway.

4. The gateway signs with the same method. The system then checks whether the two signatures are consistent.

8.5. Key generation method

8.6. Gateway signature mechanism introduction

Mobile Gateway Service User Guide·Reference

> Document Version: 20230209 41

https://www.openssl.org/source/

	1.Change history
	2.About Mobile Gateway Service
	3.Terminology
	4.Client-side development guide
	4.1. Android
	4.1.1. Quick start
	4.1.2. Advance guide

	4.2. iOS
	4.2.1. Add SDK
	4.2.2. Use the SDK

	4.3. H5 JS programming

	5.Server-side development guide
	5.1. Backend signature verification
	5.2. Service definition and development
	5.3. Instructions on gateway helper classes

	6.Gateway exception troubleshooting
	7.FAQ
	8.Reference
	8.1. Gateway result codes
	8.2. Security guard result codes
	8.3. Gateway log instructions
	8.3.1. Gateway server logs
	8.3.2. Gateway SPI logs

	8.4. Service interface definition specifications
	8.5. Key generation method
	8.6. Gateway signature mechanism introduction

